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Abstract: The thermolysis of the 14.2.2lpropellene proceeds with good first order ki- 
netics and gives E = 46 kcallmole. The increase in E over that for bicyclo[2.2.0lhexane 
and the 12.2.2lpropelfane provides evidence for the meohagism of these thermolyses. 

The thermolyses of bicyoloI2.2.0lhexane. (L)l-’ and the [2.2.21propellane (2)“’ have 

received considerable study. Despite the similarity in structure, and in the products of 

thermolysis, the reactions are suggested to proceed via different mechanisms. The reaction 

of & is believed to involve the formation of the boat cyclohexane-1,4-diradical (2) which 

isomerizes to the chair diradioal (2). This, in turn, forms the product diene via an orbital 

symmetry allowed reaction. The mechanism accounts for the thermal inversion of 1 (E = 35 
a 

koal/mole)s as well as the stereochemistry of the overall reactions” (Ea = 36 kcal/mole).l’s 

The reaction of & is believed to proceed again via a 1,4-diradical (2). Bere, it is 

proposed that the antibonding diradical (5) is of lower energy, and is formed from ;Z in the 

rate determining step. A rapid cleavage of 2 to the product via an orbital symmetry allowed 

process completes the reaction.’ A remarkable difference between the thermolyses of ;I. and 2 

is found in the low activation energy for the reaction of z (22 kcal/mole).* 
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In order to explore the reasons for the differences between these two reactions, we have 

examined the thermolyses of the [4.2.21propellene-3 (1) and [4.2.21propellane (8), as well as 

the L3.2.2lpropellane derivatives 2 and g. Both 1 and 2 are readily prepared by the 

Diels-Alder reaction of Al”bicyclo[2.2.0lhexene with butadiene, or cyclopentadiene respec- 

tively.” This is followed in the case of 8 and s by diimide reduction. The rates of their 

reactions were determined using a stirred flow reactor,’ and gave good first order kinetics.’ 

The prodncts,9 relative reactivities (310° C.) and activation energies (_+ 1 kcal/mol) are 

shown below: 
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The decrease in reaction rate in going from & to the propellanes z-&g is striking, and 

can only result from the geometrical restraint preventing the formation of a chair 

cyclohexan-1.4-diyl in the latter cases. Thus, the reaction which proceeds via the boat ac- 

tivated complex is strongly disfavored. The activation energy for the thermolysis of 1 was 

10 kcal/mole greater than that for the thermolysis of 1. The changes in rate through the 

series I-10 are in ..,_ accord with expected strain energies.lO The SE of 1 should be close to 

that of 5. The known structure of El1 indicates that the bicyclohexane unit is considerably 

distorted to accommodate the torsional angles in the saturated 4-carbon chain. The SE of 2 

should be greater than that of z or S because of the shorter distance between the bridging 



carbons forced by the smaller bridge. The double bond in 2 should decrease the distance 

even more leading to further destabilization. 

The thermolysis of 2 must proceed vie en activated complex which has a geometry similar 

to that for I-10 _ -. Why is its activation energy so much smeller then that for 17 The answer 

cannot be found in a difference in flexibility, for 7 could form en extended 1,4-diredicel, 

allowing en antibonding ground state, es well as 2. Although 2, has three CT* orbitels which 

may help stabilize the antibonding diredical whereas S has only two, it is difficult to see 

how this difference could account for the large difference in activation energy. 

A major difference between 2 end 1 is in the strain energy. The replacement of the six 

membered ring in 1 with the four membered ring in 2_ should increase the strain by et least 20 

kcal/mole. The resultant destabilization of the ground state must lead to a marked reduction 

in the activation energy, end certainly is a major factor in accounting for the large differ- 

ence in activation energy. 

These results allow one to summarize all of the results on the thermolysis of 

bicyclo[2.2.0lhexenes as indicated in Figure 1. The twist diredicel is suggested by the cel- 

culetions of Dewer, et. el.ls to be the activated complex for the interconversion of the two 

boat diredicels. leading to the conformational invers,ion of 1. The half-chair diredicel is 

probably the activated complex for the conversion of the boat to the chair diredicel, end 

leads to the 36 kcel/mol activation energy for conversion of 1 to 1,5-hexadiene.” 
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If the rearrangement to the diene is forced to proceed via the boat diradical, the reaction 

will have an activation energy on the order of 46 kcal/mol (i.e., that of 1). The remaining 

problem is that of separating the effects of strain and (I' orbital participation in the ser- 

ies: cyclobatane, l_ and 2." This will be discussed at a later time. 
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